$c , G$ અને $\frac{ e ^{2}}{4 \pi \varepsilon_{0}}$ માંથી બનાવેલ લંબાઈનું પરિમાણ શું થાય?
(જ્યાં $c -$ પ્રકાશનો વેગ, $G-$ ગુરુત્વાકર્ષણનો સાર્વત્રિક અચળાંક અને $e$ વિદ્યુતભાર છે)
$\frac{1}{{{c^2}}}$$\sqrt {\frac{{{e^2}}}{{G4\pi \varepsilon_0}}} $
$\frac{1}{{{c^{}}}}\frac{{G{e^2}}}{{4\pi\varepsilon_0}}$
$\frac{1}{{{c^2}}}$$\sqrt {\frac{{G{e^2}}}{{4\pi \varepsilon_0}}} $
${c^2}\;\sqrt {\frac{{G{e^2}}}{{4\pi \varepsilon_0}}} $
વિધેય $f(\theta )\, = \,1\, - \theta + \frac{{{\theta ^2}}}{{2!}} - \frac{{{\theta ^3}}}{{3!}} + \frac{{{\theta ^4}}}{{4!}} + ...$ વ્યાખ્યાયિત થાય છે તો $f(\theta )$ એ પરિમાણરહિત રાશિ હોવાથી જરૂરિયાત શું છે ?
કણનો $t $ સમયે (સેકન્ડમાં) વેગ ($cm/sec$) $v = at + \frac{b}{{t + c}}$ સંબંધ દ્રારા અપાય છે; $a,b$ અને $c$ નુ પારિમાણિક સૂત્ર શું થાય?
$\left(P+\frac{a}{V^2}\right)(V-b)=R T$ કેટલાક વાયુઓની સ્થિતિનું સમીકરણ રજૂ કરે છે. જ્યાં $P$ એ દબાણ છે, $V$ એ કદ છે, $T$ એ તાપમાન અને $a, b, R$ એ અચળાંકો છે. કઈ ભૌતિક રાશિનું પારિમાણિક સૂત્ર $\frac{b^2}{a}$ ના પારિમાણિક સૂત્ર જેવુ થાય?