$c , G$ અને $\frac{ e ^{2}}{4 \pi \varepsilon_{0}}$ માંથી બનાવેલ લંબાઈનું પરિમાણ શું થાય?
(જ્યાં $c -$ પ્રકાશનો વેગ, $G-$ ગુરુત્વાકર્ષણનો સાર્વત્રિક અચળાંક અને $e$ વિદ્યુતભાર છે)
$\frac{1}{{{c^2}}}$$\sqrt {\frac{{{e^2}}}{{G4\pi \varepsilon_0}}} $
$\frac{1}{{{c^{}}}}\frac{{G{e^2}}}{{4\pi\varepsilon_0}}$
$\frac{1}{{{c^2}}}$$\sqrt {\frac{{G{e^2}}}{{4\pi \varepsilon_0}}} $
${c^2}\;\sqrt {\frac{{G{e^2}}}{{4\pi \varepsilon_0}}} $
બળને $F = a\, sin\, ct + b\, cos\, dx$ સમીકરણ મુજબ આપવામાં આવે છે, જ્યાં $t$ સમય અને $x$ અંતર છે તો $a/b$ નું પારિમાણિક સૂત્ર કેટલું થાય?
જો કોઈ નેનોકેપેસીટરનું કેપેસીટન્સ વિદ્યુતભાર $e,$ બોહર ત્રિજ્યા $a_0,$ પ્લાન્ક અચળાંક $h$ અને પ્રકાશની ઝડપ $c$ ના મિશ્રિત એકમ $u$ થી માપવામાં આવેલ હોય, તો.....
એક ભૌતિક રાશી $x$ ને $M, L $ અને $ T$ ના સ્વરૂપમાં $x = M^aL^bT^c $ સૂત્રની મદદથી રજૂ કરવામાં આવે છે તો